Regulation of fetal hemoglobin expression during hematopoietic stem cell development and its importance in bone metabolism and osteoporosis

Regulation of fetal hemoglobin expression during hematopoietic stem cell development and its importance in bone metabolism and osteoporosis

Abstract

We have shown that an altered tissue redox environment in mice lacking either murine beta Hemoglobin major (HgbβmaKO) or minor (HgbβmiKO) regulates inflammation. The REDOX environment in marrow stem cell niches also control differentiation pathways. We investigated osteoclastogenesis (OC)/osteoblastogenesis (OB), in bone cultures derived from untreated or FSLE-treated WT, HgbβmaKO or HgbβmiKO mice. Marrow mesenchymal cells from 10d pre-cultures were incubated on an osteogenic matrix for 21d prior to analysis of inflammatory cytokine release into culture supernatants, and relative OC:OB using (TRAP:BSP, RANKL:OPG) mRNA expression ratios and TRAP or Von Kossa staining. Cells from WT and HgbβmaKO mice show decreased IL-1β,TNFα and IL-6 production and enhanced osteoblastogenesis with altered mRNA expression ratios and increased bone nodules (Von Kossa staining) in vitro after in vivo stimulation of mRNA expression of fetal Hgb genes (Hgbε and Hgbβmi) by a fetal liver extract (FSLE). Marrow from HgbβmiKO showed enhanced cytokine release and preferential enhanced osteoclastogenesis relative to similar cells from WT or HgbβmaKO mice, with no increased osteoblastogenesis after mouse treatment with FSLE. Pre-treatment of WT or HgbβmaKO, but not HgbβmiKO mice, with other molecules (rapamycin; hydroxyurea) which increase expression of fetal Hgb genes also augmented osteoblastogenesis and decreased cytokine production in cells differentiating in vitro. Infusion of rabbit anti- Hgbε or anti- Hgbβmi, but not anti-Hgbα or anti- Hgbβma into WT mice from day 13 gestation for 3 weeks led to attenuated osteoblastogenesis in cultured cells. We conclude that increased fetal hemoglobin expression, or use of agents which improve fetal hemoglobin expression, increases osteoblast bone differentiation in association with decreased inflammatory cytokine release.

Authors: Kos O1, Alexander C2, Brandenburg K2, Chen Z1, Heini A3, Heumann D3, Khatri I1, Mach JP4, Rietschel ET5, Terskikh A6, Ulmer AJ2, Waelli T3, Yu K1, Zähringer U2, Gorczynski RM7.

Influence Factor: 2.956

Citation: Int Immunopharmacol 57, 112-120 (2018).

Read entire article

Share:

Back to top