Basic Information

Strain Name
NOD.CB17-PrkdcscidIl2rgtm1/Bcgen
Common name
B-NDG mice
Background
NOD scid
Catalog number
110586
Genotype
Male: Prkdc (-/-), IL2rg (X-/Y); Female: Prkdc (-/-), IL2rg (X-/X-)

Description

The Immune-deficient B-NDG mouse model (NOD.CB17-PrkdcscidIl2rgtm1/Bcgen) was independently designed and generated by Biocytogen. B-NDG mice are generated by deleting the IL2rg gene from NOD-scid mice with severe immunodeficiency phenotype. Lacking  mature T cells, B cells or functional NK cells, and displaying cytokine signaling deficiencies , this mouse model has the highest degree of immunodeficiency and thus is most suitable for engraft and growth of human hematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) and human tumor cells or tissues.

  • NOD-scid (non-obese diabetes, severe combined immunodeficiency) genetic background: mice of NOD genetic background and with Prkdc (protein kinase DNA-activated catalytic) knockout. Functional T cells, B cells and complement system in these mice are lost, and the activity of NK cells is greatly weakened.
  • IL2rg null: the gamma chain of Interleukin-2 receptor (IL-2R γc, also called CD132) is on the mouse X chromosome, and is the common receptor subunit of cytokines IL2, IL-4, IL-7, IL-9, IL-15 and IL-21 with important immune functions. After IL2r is knocked out, mouse immunity function is greatly weakened, activities of NK cells, which are almost completely lost.
  • Prkdc null (DNAPK, scid): Prkdc (protein kinase DNA-activated catalytic) null mutation is characterized by significantly deficient of functional T cells and B cells, and an absence of lymphocytes, recapitulating severe combined immunodeficiency (scid) in human patients.

Targeting strategy

Phenotypic Analysis

1. Body Weight Growth

Figure 1. Body weight growth curve of B-NDG mice after birth

Newborn pups (50 males and 50 females, respectively) were obtained at weaning (Week 3; birthdate +/- 3 days). Body weight was measured once every week (on the same day each week) for 8 weeks.

2. Serum Antibody Response

Figure 2. IgG, IgM and IgG subclasses response in the sera of BALB/c, B-NDG and Blank

(A) Value of OD450 in the sample from BALB/c mice is significantly higher than that from Blank (PBS) and B-NDG mice (~0.04), indicating little or no IgG or IgM in the sera of B-NDG mice.(B) Value of OD450 in the sample from BSA is ~ 0.06 (baseline is 0.1), indicating there is no cross-reaction among antibody capture, linking of enzyme to the antibody and BSA. Compared with the value from BALB/c mice, the value from B-NDG mice is below the baseline. This result suggests that there is no IgG subclasses in the sera of B-NDG mice, confirming it is an ideal mouse model with severe immunodeficiency.

3.Flow-cytometric Analysis Using Specific Markers for T, B and NK Cells

Figure 3. Analysis of spleen leukocyte subpopulations by FACS

Splenocytes were isolated from female BALB/c, NOD-scid and B-NDG mice (n=3, 6-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for mCD45 population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells was detectable in BALB/c mice, NK cells was detectable in NOD-scid, but not B-NDG mice.

4.Histology of spleen from B-NDG mice

 

Figure 4. Histological sections of spleen from 9-week-old C57BL/6, NOD-scid and B-NDG mice.

Spleen from C57BL/6 mouse has normal structure with well-defined follicles. Spleen from NOD-scid mouse shows hypoplasia of white pulp. Spleen from B-NDG mouse shows complete loss of follicular structure.

5.Immunohistochemistry of spleen from B-NDG mice

Figure 5. Histological sections of spleen from 9-week-old C57BL/6, NOD-scid, and B-NDG mice (n=3).

Spleen from C57BL/6 mouse has normal CD3ε and CD19 expression (brown), No CD3ε and CD19 expression in mice B-NDG mice.

6.Hematology test results

Figure 6. Complete blood count (CBC) test results for B-NDG mice
Blood from B-NDG mice (n=6, 6 week-old) was collected and analyzed for CBC. Values are expressed as mean ± SEM.

7. Biochemical Test Results for Blood

 

Figure 7. Blood biochemical test results of B-NDG mice(n=6).

Serum from the B-NDG mice (n=6, 6 week-old) was collected and analyzed for levels of ALT, AST, CHOL, CR, GLU, TRIG and UREA. Values are expressed as mean ± SEM.

Instrument:Thermo Fisher scientific # Indiko

Animal Breeding and Maintenance

1. Animal Housing and Husbandry

1.1 Health Status of Housing

Health status of housing: B-NDG mice are housed in isolators instead of IVCs in our facility. Based on our experience, the mice can live up to 2 months in SPF standard IVCs. This time frame matches the requirements of most experiments performed with B-NDG mice. To improve facility standards, strict sanitation procedures are recommended: cages and bedding need to be sterilized by autoclaving or Co60 irradiation before use, and cages need to be changed in laminar flow hoods weekly. Keeping a clean, high standard housing environment helps to improve the life span of B-NDG mice.

1.2. Animal Husbandry

Food

5CJL from Labdiet (USA) is recommended to use for breeding B-NDG mice (19.3% protein, 6.2% fat, 20 ppm Vitamin K). Co60 radiation is recommended to sterilize the food before use.

Water

B-NDG mice are housed in pathogen-free isolators in our facility. Autoclaved purified water is used.

For SPF standard facilities, we recommend following the Jackson Lab standard for water supply: acidified water (adjust pH to 2.5-3.0 using HCl), autoclaved to prevent Pseudomonas and Staphylococcus aureus infection. Autoclaved purified water can also be used with more frequent water changes. Bottle must be changed every 3 days regardless if there is still water left in the bottle.

Bedding

Shavings are the recommended bedding material for B-NDG mice. The bedding material needs to be sterile, soft, dust-free, odor-free and have high moisture absorbance. Sterilization by autoclaving or irradiation is required before use.

Bedding needs to be changed weekly in laminar flow hoods if the mice are not housed in isolators. Mice need to be transferred into new cages with fresh bedding using sterile tweezers or forceps.

Housing Environment

Enough light time and appropriate light intensity are necessary for breeding. We use a standard light cycle, which is 12-hours of light followed by 12-hours of dark.

Housing temperature is strictly 20-26 °C. The temperature difference between day and night should not be more than 4 °C.

Cages need to be made from non-toxic material and must be easy to clean and disinfect. Thorough cleaning and disinfection is required every week at least.

Parameters Range recommended
Temperature 20℃-26℃
Humidity 40%-70%
Ventilating rate 15 times per hr
Light Cycle 12:12(standard)
Light intensity 15-20 lux (in cage)
Noise ≤60 db

2. Transportation

Biocytogen’s B-NDG mouse can be shipped using land and/or air. Although the courier is notified to handle the crate with care, stress response of mice during shipment is still inevitable. Although enough supply of water jelly and food will be provided in cages, increased metabolism and fecal excretion caused by the stress may result in dehydration and loss of body weight. General percentage weight loss due to shipment is ~10%. The percentage can be as high as 15% if the shipment procedure is longer and the cage is populated. Usually, most of the lost body weight is regained (although cannot reach 100%) after 5-7 days of adaptive feeding (Labdiet food is recommended).

 

3. Adaptive Feeding

Importance of adaptive feeding

Before performing experiments, at least 5-7 days of feeding in the receiving facility are required so that the animals can adapt to their new environment, and the stress response caused by transportation can be eliminated or alleviated.

Brief procedure description of adaptive feeding

Perform animal husbandry following 1.10.1.2. Monitor the health status of animals by observing their appearance (e.g. hair), feces and activity. Separate the animals from other animals in the facility as the sound and smell (e.g. Ammonia smelling feces) from other animals may be stimuli. Adaptive feeding is a critical prerequisite for successful experiments.

Anti-Tumor Efficacy in CDX & Humanized Models

See our Anti-Tumor Efficacy in CDX & Humanized Models here

Publications

  1. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors
  2. An unexpected role for p53 in regulating cancer cell–intrinsic PD-1 by acetylation
  3. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment
  4. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL
  5. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy
  6. Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis
  7. Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy
  8. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling
  9. Protease-activated receptor 2 stabilizes Bcl-xL and regulates EGFR–targeted therapy response in colorectal cancer
  10. Alpha lipoic acid promotes development of hematopoietic progenitors derived from human embryonic stem cells by antagonizing ROS signals
  11. Epigenetically silenced linc00261 contributes to the metastasis of hepatocellular carcinoma via inducing the deficiency of FOXA2 transcription
  12. Therapeutic Targeting of CDK7 Suppresses Tumor Progression in Intrahepatic Cholangiocarcinoma
  13. Expression levels of a gene signature in hiPSC associated with lung adenocarcinoma stem cells and its capability in eliciting specific antitumor immune-response in a humanized mice model
  14. Promising xenograft animal model recapitulating the features of human pancreatic cancer
  15. Effective antitumor activity of 5T4-specific CAR-T cells against ovarian cancer cells in vitro and xenotransplanted tumors in vivo
  16. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma
  17. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels
  18. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer
  19. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT
  20. Sequential treatment with aT19 cells generates memory CAR-T cells and prolongs the lifespan of Raji-B-NDG mice
  21. Preliminary biological evaluation of 123I-labelled anti-CD30-LDM in CD30-positive lymphomas murine models
  22. Glycyrrhizic acid improves cognitive levels of aging mice by regulating T/B cell proliferation
  23. Degradable Carbon-Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy
  24. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2
  25. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer
  26. A Tumor-Targeted Replicating Oncolytic Adenovirus Ad-TD-nsIL12 as a Promising Therapeutic Agent for Human Esophageal Squamous Cell Carcinoma
  27. TriBAFF-CAR-T cells eliminate B-cell malignancies with BAFFR-expression and CD19 antigen loss
  28. Two-step protocol for regeneration of immunocompetent T cells from mouse pluripotent stem cells
  29. R9AP is a functional receptor for Epstein-Barr virus infection in both epithelial cells and B cells
  30. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation
  31. Downregulation of lncRNA ZNF582-AS1 due to DNA hypermethylation promotes clear cell renal cell carcinoma growth and metastasis by regulating the N(6)-methyladenosine modification of MT-RNR1
  32. Cutting Edge: Inhibition of Glycogen Synthase Kinase 3 Activity Induces the Generation and Enhanced Suppressive Function of Human IL-10 + FOXP3 +-Induced Regulatory T Cells
  33. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-d-glucan
  34. Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer
  35. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions
  36. Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids
  37. LunX-CAR T Cells as a Targeted Therapy for Non-Small Cell Lung Cancer
  38. A Tumor-Targeted Replicating Oncolytic Adenovirus Ad-TD-nsIL12 as a Promising Therapeutic Agent for Human Esophageal Squamous Cell Carcinoma
  39. MUC1-Tn-targeting chimeric antigen receptor-modified Vγ9Vδ2 T cells with enhanced antigen-specific anti-tumor activity
  40. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling
  41. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor
  42. The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML
  43. BMI1 regulates multiple myeloma-associated macrophage’s pro-myeloma functions

References

1) Xinhua Xiao, Huiliang Li, Huizi Jin, Jin Jin, Miao Yu, Chunmin Ma, Yin Tong, Li Zhou, Hu Lei, Hanzhang Xu, Weidong Zhang, Wei Liu, and Yingli Wu. 2017. Identification of 11(13)-dehydroivaxillin as a potent therapeutic agent against non-Hodgkin’s lymphoma. Cell death & disease. 8(9):e3050.

2) Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175-82. [PMID: 12384415]

3) Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R. 2005. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477-89. [PMID: 15879151]

4) McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. 2010. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116(2):193-200. [PMID: 20404133]

5) Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ. 2010. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Blood 70(10):790-802. [PMID: 19524633]

6) Shultz LD1, Brehm MA, Bavari S, Greiner DL. 2011. Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50-4. [PMID: 22211979]

7) Covassin L1, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, Brehm MA. 2013. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγ (null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 174(3):372-88. [PMID: 23869841]

8) Wege AK, Schmidt M, Ueberham E, Ponnath M, Ortmann O, Brockhoff G, Lehmann J. 2014. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies. MAbs 6(4):968-77. [PMID: 24870377]